
Memory Expansion and Storage
Acceleration with CCIX Technology

Millind Mittal, Fellow, Xilinx
Jason Lawley, DC Platform Architect, Xilinx

Agenda

• Brief introduction to CCIX
• Memory Expansion through CCIX
• Persistent Memory support
• Storage with Compute offload
• Q&A

2

CCIX Context

• Slow down of performance scaling and efficient of general
purpose processors

• Increasing “workload specific” computation requirements
• Data analytics, 400G, ML, Security, compression, ……

• Lower latency requirements
• cloud based services, IoT, 5G, …..

• Need for open standard for advancing IO Interconnect to
enable seamless expansion of compute and memory
resources
• Enable accelerator SoCs to be like a NUMA sockets from Data Sharing

perspective

4

The CCIX Consortium
• 53 Members covering all aspects of ecosystems;

Servers, CPU/SoC, Accelerators, OS, IP/NoC,
Switch, Memory/SCM, Test & Measurement
vendors.

• Specification Status
• Rev 1.0 - 2018
• Rev 1.1/Rev1.2 – 2019
• SW Guide Rev 1.0- Sept, 19

• CCIX Hosts:
• ARM 7nm test Processor SoC providing

CCIX interface (N1SDP)
• Huawei announced Kunpeng 920
• A 3rd party ARM SoC, Sample 12/19

• CCIX Accelerator / EP
• Xilinx VU3xP family
• Alveo boards (U50 and U280) available
• 7nm chip Versal with CCIX support

announced
• SW Enablement

• In progress ; Key enablement to be
completed Sept, 19

5

Use of Caches for System Performance

Role of Slave Agent

•Slave Agent provides additional memory to a Home Agent
•Slave Agent is only protocol visible when residing on a different chip

CCIX -Transport and Layered Architecture

CCIX and PCIe Transaction Layers
• Responsible for handling their

respective packets
• PCIe & CCIX packets are split across

virtual channels (VCs) sharing same
link

• Optimized CCIX packets: Eliminates
the PCIe overhead

PCIe Data Link Layer
• Performs normal functions of

the data link layer CCIX/PCIe Physical Layer
• Faster speed, known as ESM (Extended

Speed Mode)

CCIX Protocol Layer
• Responsible for the coherency including

memory read and write flows
• CCIX Link Layer
• Responsible for formatting CCIX traffic

for the target transport and non-blocking
behavior between two CCIX devices

• Currently PCIe but could be mapped
over a different transport layer in the
future

CCIX – Open Standard Memory Expansion and Fine-Grain Data Sharing
Model with Accelerators

C
oa

rs
e

gr
ai

n
(p

ro
du

ce
r c

on
su

m
er

)

Fi
ne

 G
ra

in

Host Attached Accelerator Attached System Memory

D
at

a
Sh

ar
in

g
 M

od
el

PCIe style IOC based
model but with high BW
and lower latency

1

2

6

Enabling Seamless Expansion of Compute and Memory Resources – Accelerator
SoCs are seen as NUMA Socket

CCIX - Flexible Topologies

7

SW enablement in progress
•ACPI 6.3 and UEFI 2.8 enhancements for CCIX

• Specific-purpose Memory
• Generic Initiator Affinity Structure and associated _OSC bit
• HMAT Table Enhancements
• New CPER record for CCIX

•Ongoing Reference Code Implementation jointly done by Linaro, Arm and
other members

• Mail list ccix@linaro.org
• JIRA Initiative https://projects.linaro.org/browse/LDCG-713
• Work presented at Linaro Connect BKK19 in April 2019
• UEFI Firmware code is available as part of project

Memory Expansion Through
CCIX

8

Memory Expansion Through NUMA

Demonstrated Extended memory
through NUMA over CCIX at SC18
KVS Database (Memcached) was
enhanced to make use of NUMA
expansion model over CCIX
Key allocations are done in Host DDR,
where as corresponding values were
allocated on remote FPGA memory
Expansion memory can also be a
persistent memory connected over CCIX
link https://www.youtube.com/watch?v=drIu4vlubxE&list=PLRr5

m7hDN9TLI3vuw1OqLbF7YcGi3UO9c&index=9

9

Redis with Persistent Memory support

19

Without Persistent Memory With Persistent Memory

Storage with Compute Offload

10

Analysis and Inference

• Run two performance bench marking tests & collected call
stacks
• https://github.com/johnlpage/POCDriver
• https://github.com/mdcallag/iibench-mongodb

• Major hot spots were identified as
• WiredTiger IO operations (IO intense)
• Compression (CPU intense)

WiredTiger Storage Engine (http://source.wiredtiger.com/)

• WiredTiger is an performance, scalable, production
quality, NoSQL, Open Source extensible platform for
data management

12

Accelerated Design Over CCIX

Host FPGA

RA
Cache

HA

FPGA
Memory

RA
Cache

HA

Host
Memory

HW Kernels

Local
Memory

• IOPs are limited due to OS context switch and other
SW overheads

• Enable user space calls to FS directly

• Offload performance critical operations
(writes/reads) fully to FPGA with interface to storage

• File system Meta data structures are maintained in
shared FPGA memory

• Actual file data is stored over FPGA connected
storage class memory which is faster than SSDs

• Inline efficient Compression

• Seamless acceleration architecture through shared
meta-data enabled by CCIX

13

Split File System Operation Distribution Between Host & FPGA

• Instead of full file system offload we propose a split file system with Metadata share over CCIX interface
• CPU Handled operations:

• fs_open – Creates new file or reopens the existing file
• fs_exist – Checks whether the file exists
• fs_rename – Renames existing file
• fs_terminate – closes the file system
• fs_create – creates the file system
• file_size – Returns the file size
• file_close – closes the file
• file_truncate – truncates the file to the specified size
• fs_read – Reads a data block from file

• All these operations need not be sent to FPGA as these can read/edit the shared structures
• Only handle fs_write in FPGA with the focus to achieve accelerated performance for Writes.

• Be able to ingest the data into NoSQL DBs like MongoDB.

14

SC19 processing flow
Without data compression

Buffer cache
(DRAM or PMEM)

In‐memory
document

File_read

HA

H
os
t

FP
G
A Write‐Engine

File_write

FS meta‐data;
Permissions,size, inode, ….

Indexed by FileID.offset

Wired
Tiger
Storage
Layer

Application Buffer

Block Storage

U
se
r

Ke
rn
el FS_read thread

Write IO Engine

Block
Storage

1

2

3

3

5

4

5

Accelerators
with RA

2

4
3

SC19 processing flow
With data compression

Buffer cache
(DRAM or PMEM)

In‐memory
document

File_read_uncompress

HA

H
os
t

FP
G
A Write‐Engine

File_write_compress

FS meta‐data;
Permissions,size, inode, ….

Indexed by FileID.offset

Wired
Tiger
Storage
Layer

Application Buffer

Block Storage

U
se
r

Ke
rn
el FS_read thread

Write IO Engine

Block
Storage

1

2

3

3

5

4

5

Accelerators
with RA

2

4 3

3a Update “size” in WT

Split File System Operation Distribution Between Host & FPGA

FSlibApp1

App3

App2

FPGA File System HW Engine for FS_Write
FS_Write-with-compression

Meta Data

U
se
r s
pa

ce
Ke

rn
el

Disks

FSlib

FSlib

FS_Read and
Control/Management

operations

H
O
ST

FP
G
A

Meta‐data sharing
enabled by CCIX

Meta-data in the FPGA Attached Memory

FSlibApp1

App3

App2

FPGA File System HW Engine for FS_Write
FS_Write-with-compression

Meta Data

U
se
r s
pa

ce
Ke

rn
el

Disks

FSlib

FSlib

FS_Read and
Control/Management

operations

H
O
ST

FP
G
A

Meta‐data
sharing enabled
by CCIX

Current PoCs underway

•Storage layer acceleration
• PMDK framework enablement for ARM processors for SCM
• Write IO-Ops acceleration for MongoDB  Show case at SC19
• Memory expansion on Xilinx Versal device  XDF 19

23

Summary

•CCIX enables new platform level capability to enable accelerated solutions
for storage and other verticals
•CCIX technology is ready to develop PoCs and products
•Contact below to learn more

https://www.ccixconsortium.com/ or

You can contact me at millind@Xilinx.com

24

